
Phase Diagrams of Earth-Forming Minerals 

Dean C. Presnall 

The purpose of this compilation is to present a selected 
and compact set of phase diagrams for the major Earth- 
forming minerals and to show the present state of knowl- 
edge concerning the effect of pressure on the individual 
mineral stabilities and their high-pressure transformation 
products. The phase diagrams are arranged as follows: 

Figure 
Silica 1 
Feldspars 2-7 
Pyroxenes 8-13 
Olivine 14-16 
Garnet 17-20 
Iron-titanium oxides 21-23 
Pargasite 24 
Serpentine 25 
Phlogopite 25 
Iron 26-27 

The compilation has been compressed in three ways. (1) 
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For several of the mineral groups, only representative 
phase diagrams are shown. (2) The presentation of more 
complex phase diagrams that show mutual stability 
relationships among the various minerals and mineral 
groups has been minimized. (3) Many subsolidus phase 
diagrams important to metamorphic petrology and 
thermobarometry are excluded. Reviews of these 
subsolidus phase relationships and thermodynamic data for 
calculating the phase diagrams have been presented 
elsewhere [13, 50, 70, 122, 1541. Other useful reviews and 
compilations of phase diagrams are Lindsley [96] for 
oxides, Gilbert et al. [60] and Huckenholz et al. [74] for 
amphiboles, Liu and Bassett [104] for elements, oxides, 
and silicates at high pressures, and Phase Diagrams for 
Cerumists [129-1371. It will be noted that some diagrams 
are in weight percent and others are in mole percent; they 
have usually been left as originally published. Minor 
drafting errors and topological imperfections that were 
found on a few of the original diagrams have been 
corrected in the redrafted diagrams shown here. 
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Fig. 1. Phase relationships for SiO2. Numbers beside 
curves refer to the following sources: 1 - [178]; 2 - [168]; 3 
- [160]; 4 - [4]. The melting curve is from Jackson [77] at 
pressures below 4 GPa, from Kanzaki [83] at pressures 
between 4 and 7 GPa, and from Zhang et al. [178] at 
pressures above 7 GPa. The temperature of the high 
quartz-low quartz-coesite invariant point is from Mirwald 
and Massonne [ 1131. The quartz-coesite transition is from 
Bohlen and Boettcher [24] but note that their curve lies 
toward the low-pressure side of the range of curves by 
others [5, 23, 31, 62, 89, 1131. The high quartz-low quartz 
curve is from Yoder [172]. Boundaries for the tridymite 
and cristobalite fields are from Tuttle and Bowen [164] 
except that the cristobalite-high quartz-liquid invariant 
point has been shifted to 0.7 GPa to accomodate the data of 
Jackson [77]. Silica has been synthesized in the FezN 
structure at 35-40 GPa, T>lOOO”C by Liu et al. [105], and 
at 35 GPa, 500-1000°C by Togaya [162]. However, 
Tsuchida and Yagi [ 1631 reported a reversible transition 
between stishovite and the CaC12 structure at 80-100 GPa 
and T> 1000°C. 

Fig. 3. Isopleth for the composition, CaAI;?SizOs [67, 941. 
Cor, corundum; Gr, grossular; Ky, kyanite; Qz, quartz; Liq, 
liquid. Locations of dashed lines are inferred. 

Pressure, GPa 

Fig. 2. Isopleth for the composition, NaAlSigOs [12, 16, 
331. The albite = jadeite + quartz reaction shown by Bell 
and Roseboom [12] and in this figure is about 0.1 GPa 
higher than the curve of Boettcher and Wyllie [22]. The 
,latter passes through the “consensus” value of 1.63 GPa, 
600°C for this reaction [81]. Also, the quartz-coesite curve 
shown by Bell and Roseboom [12] and in this figure is 
about 0.4 GPa higher at 1300°C than the pressure given by 
a linear extrapolation of the curve of Bohlen and Boettcher 
[24], which is shown in Figure 1. The curve of Bohlen and 
Boettcher would intersect the albite = jadeite + quartz 
curve at about 1300°C rather than the jadeite + quartz 
(coesite) = liquid curve. At about lOOO”C, Liu [loll 
synthesized NaAlSigOg in the hollandite structure at 
pressures from 21 to 24 GPa, and a mixture of NaAlSi04 
(CaFezOa-type structure) + stishovite above 24 GPa. 
Jadeite, NaAlSi206; Coesite, SiO2. 
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Fig. 4. Isopleth for the composition, KAlSi30s [93, 1491. At 12 GPa, 900°C Ringwood et al. [144] 
synthesized KAlSi3Os in the hollandite structure. In experiments from 8-10 GPa and 700”-lOOO”C, Kinomura 
et al. [88] synthesized the assemblage K2Si409 (wadeite-type structure) + kyanite (A12Si05) + coesite (SiO2) 
from the composition KAlSi30s; and they synthesized the hollandite structure of KAlSi3Os at 9OO”C, 12 GPa, 
and at 700°C 11 and 11.5 GPa. 
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Fig. 5. Compositions of coexisting alkali feldspar and plagioclase at 0.1 GPa and temperatures from 800 to 
9OO”C, as indicated [49]. Note that the phase boundary is essentially isothermal except in the Ab-rich portion 
of the diagram. Many others have discussed ternary feldspar geothermometry [lo, 39, 54, 58, 63, 66, 75, 80, 
139, 142, 151-153, 1651 and ternary feldspar phase relationships [68, 121, 156, 164, 1751. An, anorthite; Ab, 
albite; Or, orthoclase. 
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Fig. 6. Temperature-composition sections for the join NaAlSigOs (albite) - CaA12Si208 (anorthite) under 
anhydrous conditions at 1 atm [26, 1171, 1 GPa, 2 GPa [33, 941, and under H20-saturated conditions at 0.5 
GPa [79, 1751. 
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Fig. 7. Temperature-composition sections for the join NaAlSigOg (albite) - KAlSi308 (orthoclase) under 
anhydrous conditions at 1 atm [148], and under HZO-saturated conditions at 0.2 GPa [29] and 0.5 GPa [ 119, 
1751. Ab, albite; Liq, liquid; V, vapor. Locations of dashed lines are inferred. 



PRFBNALL 253 

Orthoenstatite 

Protoenstatite 

5 IO 15 20 25 
Pressure, GPa 

Fig. 8. Isopleth for the composition MgSi03 [7, 9, 35, 45, 56, 57, 65, 76, 92, 127, 140, 1691. For additional 
data at pressures above 15 GPa, see also Sawamoto [147]. Not shown is a singular point at about 0.13 GPa 
below which enstatite melts incongruently to forsterite + liquid [45]. Position of dashed curve is inferred. For 
additional data on melting temperatures up to 58 GPa, see Zerr and Boehler [ 1771. 

13001 I I I I I 
I 2 3 4 5 

Pressure, GPa 

Fig. 9. Melting curve for diopside, CaMgSi& Curve 1 is 
from Williams and Kennedy [ 1661 uncorrected for the 
effect of pressure on thermocouple emf, and curve 2 is 
from Boyd and England [33]. See also Yoder [173] for 
data below 0.5 GPa. For CaMgSi206 composition, Mao et 
al. [ 1 lo] found a mixture of perovskite (MgSi03) and glass 
at 21.7 and 42.1 GPa and lOOO”-1200°C. They interpreted 
the glass to be a second perovskite phase of CaSi03 
composition which inverted to glass on quenching [see also 
1021. 
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Fig. 10. The join MgzSi206 (enstatite) - CaMgSi206 
(diopside) at 1 atm [43]. Many others have also discussed 
phase relationships on this join [9, 14, 36, 41, 42, 56, 78, 
91, 106, 170, 1711. Fo, forsterite, MgzSi04; Liq, liquid; 
Pen, protoenstatite; Opx, orthopyroxene; Pig, pigeonite; Di, 
diopside; Oen, orthoenstatite. 
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Fig. 12. Pressure-composition section for the system 
MgSiOs-CaSQ at 1650°C [55, 571. Garnet and 
clinopyroxene, when they are free of Ca on the left-hand 
margin of this diagram, are the same phases, respectively, 
as majorite and high-P clinoenstatite on Figure 7. 11, 
ilmenite; Gt, garnet; Pv, perovskite; Cpx, clinopyroxene; 
Opx, orthopyroxene; Di, diopside; CM, a high-pressure 
phase of unknown structure. 

Fig. 11. Thermodynamically modeled subsolidus phase 
relationships for the system Mg2Si206 (enstatite) - 
CaMgSi206 (diopside) from I.5 to 10 GPa [56, 441. The 
thermodynamic models are based on data from other 
sources [37, 98, 118, 123, 128, 1501. See also data of 
Biggar [ 151 from 1 atm to 0.95 GPa. 
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Mole percenl 
Fig. 13. Orthopyroxene + augite, orthopyroxene + augite + pigeonite, and pigeonite + augite equilibria at 1 
atm and 500-1300°C [95]. Phase relationships to the right of the forbidden zone boundary are metastable 
relative to augite + olivine + silica. Lindsley [95] has presented three other similar diagrams at 0.5, 1, and 1.5 
GPa. Lindsley and Andersen [97] should be consulted for correction procedures required before plotting 
pyroxenes on these diagrams for geothermometry. En, enstatite (MgSi03); Fs, ferrosilite (FeSiO3); Di, 
diopside (CaMgSi206); Hd, hedenbergite (CaFeSi206). 
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Fig. 14. Isopleth for the composition Mg2SiOd [48, 57, 1411. Additional studies of the melting relationships 
are Ohtani and Kumazawa [126] and Kato and Kumazawa [84-861. Locations of dashed lines are inferred. 
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Fig. 15. Phase relationships for the system Mg2Si04 
(forsterite) - FezSiO4 (fayalite) in equilibrium with Fe at 1 
atm [27]. Locations of dashed lines are inferred. 
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Fig. 16. Pressure-composition sections for the join 
Mg2Si04-Fe2Si04 at various temperatures. Phase 
relationships above 21 GPa are from Ito and Takahashi 
[76] and those below 21 GPa are from Akaogi et al. [3]. 
Other references [51, 87, 1571 give additional data and 
discussion of these phase relationships. Pv, perovskite 
(MgSiOg-FeSiO3 solid solution); Mw, magnesiowiistite 
(MgO-Fe0 solid solution); St, stishovite (SiO2); Sp, spinel; 
Mod Sp, modified spinel; 01, olivine. 
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Fig. 17. Isopleth for Mg3A12Si3012, pyrope garnet. Phase 
relationships at pressures less than 5 GPa are from Boyd 
and England [32]. The melting curve at 5 GPa and above 
is from Ohtani et al. [125]. Liu [99] reported that pyrope 
transforms to perovskite + corundum at about 30 GPa, 200- 
800°C. Liu [loo] subsequently revised this result and 
found that pyrope transforms to the ilmenite structure at 
about 24-25 GPa, lOOO”-14OO”C, and that ilmenite then 
transforms to perovskite at about 30 GPa. Locations of 
dashed lines are inferred. 

I- PV 
Pv + Gt 

\ P\ 

\ Gt 1 

Al:o, 
Gt 

\ 
\ 
\ 

101 1 1 1 1 1 1 1 h k 1 ’ ’ I 
MgSiO, 5 IO 15 20 25 

Mole percent AI,O, ” 
30 AI,O, 

- 

Fig. 18. Pressure-composition section for the join MgSiOj- 
Al203 at 1000 and 1650°C [57, 821. For additional data 
along the boundary between the garnet and clinopyroxene 
+ garnet fields at 1 OOO”C, see Akaogi and Akimoto [2]. At 
1100 and 1600°C for pressures between 2 and 6.5 GPa, the 
A1203 content of pyroxene in equilibrium with garnet 
increases with decreasing pressure to at least 15 mole 
percent [30, 341. 
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Fig. 19. The system CaSi03-MgSi03-Al203 at 12OO”C, 3 GPa [30]. Co, corundum; Di, diopside; Ca-Gt, Ca- 
garnet; Mg-Gt, Mg-garnet; Wo, wollastonite; En, enstatite; CaAl$i06, Ca-Tschermak’s molecule. 
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Fig. 20. Compositions (unsmoothed) of coexisting garnet (Gt), Ca-rich pyroxene (Cpx), and Ca-poor 
pyroxene (Opx or Cpx) at various pressures and temperatures [69]. Labels of the type, 9, 2000, indicate 
pressure (GPa) followed by temperature (“C). Pyrope, Mg3Al$Si3012; Grossular, Ca3A12Si3012. 
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Fig. 21. Temperature-composition section for the system Fe-O at 1 atm [46,47, 64, 120, 1381. Light dash-dot 
lines are oxygen isobars in atm. 
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Fig. 22. The system TiOz-FeO-FqO3 at 13OO”C, 1 atm [161]. Light dashed lines are oxygen isobars labeled 
in log oxygen fugacity units (atm). Psb, pseudobrookite (FezTiOs); Fpb, ferropseudobrookite (FeTi205); Ilm, 
ilmenite (FeTiOs); Hem, hematite (FezOg); Usp, ulvospinel (FezTi04); Mt, magnetite (Fe304); Wiis, wiistite 
(Fed3 
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Fig. 23. Temperature-oxygen fugacity (&) grid for coexisting magnetite-ulvospinel solid solution and 
ilmenite-hematite solid solution pairs [ 1551. Lines with labels of the type, I-70, indicate mole % ilmenite in 
the ilmenite (FeTiOs) - hematite (Fe203) solid solution. Lines with labels of the type, U-70, indicate mole % 
ulvospinel in the ulvospinel (Fe2Ti04) - magnetite (Fe304) solid solution. Mt, magnetite; Usp, ulvospinel; 
Ilm, ilmenite; Hem, hematite. 
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Fig. 24. Pressure-temperature projection of pargasite, (Pa) 
NaCa2Mg4A13Si6022(OH,F)2, stability limits. The 
univariant curves labeled Pa-out (1 .O), Pa-out (0.5), and Pa- 
out (0.3) are from Gilbert [59], Holloway [71], and Oba 
[124], and give the maximum stability of pargasite during 

melting in the presence of a pure Hz0 or H20-CO2 vapor 
with Hz0 mole fractions of 1.0, 0.5, and 0.3. Small 
concentrations of other constituents in the vapor are 
ignored. The dashed curve labeled OHtnu, and the 
patterned areas labeled F430H57 and Ftoo are from 
Holloway and Ford [72] and Foley [52], and show the 
breakdown of pargasite during vapor-absent melting for 
different proportions of fluorine and hydroxyl in the 
pargasite. 
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Fig. 25. Pressure-temperature projection showing the upper 
temperature stability limits for serpentine, Mg$i205(OH)4 
(curves I and 2) and phlogopite, KMg3AISi30to(OH)2 
(curves 3-6). Numbers beside curves refer to the following 
sources: 1 - [28]; 2 - [90]; 3-6 - [115]. Curves 5 and 6 give 
the maximum stability of phlogopite in the presence (curve 
5) and absence (curve 6) of vapor. Curves 3 and 4 give the 
corresponding maximum stability of phlogopite in the 
presence of forsterite and enstatite, and represent more 
closely the stability of phlogopite in the mantle. Curves 3- 
6 are not univariant [114]. See Yoder and Kushiro [174] 
for an earlier study of the stability of phlogopite. Montana 
and Brearley [ 1161 speculated that a singular point exists at 
about 1.5 GPa on curve 4, so that the curve above this 
pressure is metastable. 
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Ethcp) 
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Fig. 26. Low pressure phase relationships for iron. 
Numbers beside curves refer to the following sources: 1 - 
[159]; 2 - [109]; 3 - [112]; 4 - [103]; 5 - [6]; 6 - [20,40]; 7 - 
[107]; 8 - [73]; 9 - [17, 211. Several additional references 
[61, 108, 1791 also discuss the WE transition,. 
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Fig. 27. High pressure melting curves for iron. For 
reference to Figure 26 at low pressures, the curves of 
Mirwald and Kennedy [ 1121, Bundy [40], and Boehler [ 171 
are used for the a-&-y phase relationships. Numbers beside 
melting curves and brackets refer to the following sources: 
1 - [I]; 2 - [II]; 3 - [167]; 4 - [25, 381; 5 - [17-19, 21, 103, 
143, 1531. Gallagher and Ahrens [54] found that earlier 
shock data from their laboratory [ 1 l] are 1000°K too high, 
which brings the data of Bass et al. [l l] and Brown and 
McQueen [38] into agreement. The shock data of Yoo et 
al. [176] (not plotted but located at 6350 K, 235 GPa and 
6720 K, 300 GPa) are at slightly higher temperatures than 
the data of Brown and McQueen. (Ross et al. [145] and 
Anderson [8] have proposed the existence of a new phase, 
al-iron, that is stable along the liquidus at pressures above 
about 170 GPa. On the basis of molecular dynamics 
calculations, Matsui [ 11 l] has also proposed the existence 
of a new phase at 300 GPa and temperatures above 5000 K. 
Saxena et al. [146] have suggested that al-iron is the 
liquidus phase down to a pressure of 60-70 GPa. CM, 
core-mantle boundary (136 GPa); IOC, inner-outer core 
boundary (329 GPa); C, center of Earth (364 GPa). 
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