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An algebraic method for determining equilibrium crystallization
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Ansrn-lcr

For an ,?-component petrologic system, Korzhinskii adopted a method for balancing
chemical equations involving n * I phases by the use of determinants. This method is
applied to crystalJiquid phase equilibria in known portions of multicomponent systems
to develop (l) a simple criterion for distinguishing between eutectic and peritectic points
and (2) procedures for calculating crystal and liquid paths for equilibrium crystallization
and fusion. For a given bulk composition, points on crystal and liquid paths are calculated
by trial-and-error searches ofbalanced equations. Successful trials are those in which the
bulk composition is expressed in terms of positive proportions of the phases in equilibrium.
The types of quantitative information normally obtained from a phase diagram (temper-
ature ofappearance and disappearance ofphases, phase compositions, phase proportions)
are calculated, and no theoretical limit exists on the number of components that can be
rigorously handled. However, from a practical standpoint, studies of equilibria in which
the variance is greater than two will be difficult, a constraint that limits the usefulness of
the method when the number of components is large and the number of phases is small.
The method will be most applicable to studies of crystal-liquid phase relationships at near-
solidus temperatures in which the number of phases is large. Such studies, which are quite
feasible on systems with as many as six components, are potentially capable of providing
much more general and rigorous constraints on models of magma generation than exist at
the present.

INrnooucrror.t

Experimental studies of model systems relevant to the
melting and crystallization behavior of rocks have been
hampered, ever since their inception, by the inability to
represent diagrammatically all the compositional rela-
tionships in systems of more than four components. Pro-
jections ofvarious types have been used, but these pro-
jections invariably result in the loss of some information.
Experimental petrologists have turned increasingly in the
last 20 years to melting studies of actual rock composi-
tions. Although these studies avoid the problem of ex-
trapolating from three or four components in laboratory
studies to about ten components in natural rocks, they do
not provide the level ofrigorous understanding obtainable
from a phase-equilibrium diagram. Given adequate rep-
resentational methods, a more systematic and generalized
understanding of fusion and crystallization processes could
be obtained by carrying studies of model systems to sys-
tems of more than four components.

Korzhinskii (1959) and others (for example, Green-
wood, 1967; Thompson, 1982a,1982b; Spearetal., 1982)
have shown how linear algebraic methods can be used to
describe and manipulate compositional relationships in
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multicomponent systems, but these methods have been
applied exclusively to subsolidus phase equilibria. Similar
mathematical methods are also useful in treating liquidus
phase relationships. An algebraic method, applicable in
principle to systems of any number of components, is
presented here for quantitatively calculating equilibrium
fusion and crystallization paths. All of the quantitative
advantages and power ofa compositional phase diagram
are retained except for the visual clarity inherent in a
diagrammatic representation. The method involves an
application of the procedure described by Korzhinskii
(1959, p. 103-106) for balancing chemical reactions with
the aid of determinants and depends on the pre-existence
of a comprehensive body of experimental data on the
compositions of coexisting liquid and crystalline phases.
Given this data set, the crystal and liquid paths can be
calculated for any arbitrary bulk composition within lim-
its of the known multicomponent space. The method is
not suitable for deducing crystal and liquid paths that
extend beyond the range ofdata available.

To illustrate and explain the method, examples will be
drawn from well-known ternary liquidus phase diagrams
and several hypothetical phase diagrams constructed to
illustrate specific points. Emphasis will be placed on pro-
cedures for deducing isobaric crystal-liquid equilibria at
various temperatures given a particular bulk composition.
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Howevero the method is equally applicable to isothermal
polybaric liquidus relationships and to liquidus relation-
ships in which the chemical potential of one or more
components is constant. Equilibrium crystallization and
fusion will be considered together because these two pro-
cesses are reversible. That is, the same phase assemblage
is produced at a given temperature regardless ofwhether
that temperature is approached from above or below.
Fractional crystallization and fusion (Presnall, 1969, 197 9)
will be dealt with in a subsequent paper.

Br,aNcrNc oF cHEMTcAL EeuATroNS

Korzhinskii (1959, p. 103-106) showed that in a system
of n components, a chemical equation involving n + I
phases can be balanced by the use of determinants. For a
three-component system, he wrote the composition of
each of four phases (A, B, C, D) in terms of proportions
(k,, 1,, m,, etc.) of the three components (X, Y, Z), as
follows:

A : k , X + l t Y + m t z
B : k z X + l 2 Y + m 2 Z
C : h X + L Y + m 3 Z
D : k ^ X + l ^ Y + m ^ Z

He then wrote the following determinant and showed that
it equals zero:

l M l  = : 0 .

Expansion of lMl yields

Fig. l. The system MgG-iron oxide-SiO, in equilibrium with
CO,, after Presnall (1979,Fie.3-l) as redrawn after Muan and
Osborn (1956), Phillips et al. (1961), and Speidel and Osborn
(1967). All iron oxide is calculated as FeO, and compositions in
parentheses are projected from oxygen. Heavy lines with arrows
indicating directions of decreasing temperature are liquidus
boundary lines. Light lines show crystalline-phase compatibility
at solidus temperatures. Dashed lines are inferred. The dash-dot
line is part ofa crystal path (see text). See Presnall (1966,1969)
for further explanation.

ties frequently occur when working with compositional
relationships on phase diagrams, I shall use Korzhinskii's
method exclusively.

Eurncrrc AND PERrrEcrIc PoTNTS

In the absence of compositional degeneracy (for ex-
ample, see ZEn, 1966), a point on a univariant P-I curve
involving a liquid phase is either an isobaric eutectic or
peritectic point on a temperature-composition liquidus
diagram. In the former case, the liquid composition can
be characterized by positive proportions of the crystalline
phases in equilibrium with it. In the latter case, it cannot
(Masing, 1944, p. ll-12). By solving a determinant in-
corporating the compositions of all the n * I phases in
equilibrium, an isobaric liquidus invariant point can be
quickly determined to be either a eutectic or peritectic
point. If the solution results in the liquid composition
appearing alone on one side ofthe equation, the invariant
point is a eutectic. If the liquid composition is joined on
the same side of the equation by one or more of the
crystalline phases, the invariant point is a peritectic.

Figure I illustrates both ofthese situations for a ternary
system. Point e is a liquid at an invariant point in equi-
librium with a silica phase q, pyroxene c and spinel k.
From the geometry, it can be seen visually that the result
of using a determinant to balance the equation involving
all the coexisting phases would be e : e r c + k. The
determinant solution would, of course, also yield coeffi-
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D : 0 ,

The coefrcients for the balanced equation are the minors
of each of the phase labels and correspond to the pro-
portions of each of the phases involved. Mathematically,
there is no requirement that A, B, C, and D represent
actual phases. They couldjust as well represent arbitrary
compositions, and this flexibility will be utilized in the
discussion that follows. Thus, symbols used in equations
that follow will refer simply to labeled composition points
on the appropriate diagram without any additional sig-
nificance, even though, in many cases, these points also
coincide with the compositions of components or phases.
In all the subsequent discussion, equations will be written
so that all coefficients are positive.

Several other methods for balancing equations by using
the methods of matrix algebra are available, but unlike
Korzhinskii's method, they do not yield a solution if a
singularity occurs (Spear et a1., 1982). Because singulari-
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Fig.2. Isobaric liquidus equilibrium diagrams for the imaginary system X-Y-Z at two different pressures, P, and Pr. Lines with
arrows indicating directions of decreasing temperature are liquidus boundary lines. The three bounding binary systems X-Y, Y-2,
and X-Z are drawn as eutectic diagrams, and none of the crystalline phases shows solid solution. The primary phase field for XYZ
is the triangular region in the central part of each diagram.

cients for each ofthe phases corresponding to their pro-
portions. The liquid composition is alone on one side of
the equation and is thus a eutectic liquid that can be
described by positive proportions of all the coexisting
crystalline phases.

Point p is a liquid in equilibrium with pyroxene b, ol-
ivine g, and spinel ft. In this case, the equation would be
p + g : b + h. The liquid p is joined on the same side
of the equation by a crystalline phase and is therefore a
peritectic liquid not capable ofbeing described by positive
proportions of all the coexisting crystalline phases.

For a reaction involving a liquid along a univariant
curve in P-7 space, the compositions of the crystalline
and liquid phases frequently are strong functions ofpres-
sure and temperature, so that the chemographic relation-
ships of the various phases change. Thus, a univariant
P-7 curve could be represented by a peritectic reaction
along one part of its length and by a eutectic reaction
along another (for example, see Bell and Roseboom,1969).
The point of transition would be a singular point marked
by some kind of compositional degeneracy. If complete
data on the compositions of the phases were available all
along the curve, the location of the singular point could
be determined precisely by noting, in successive deter-
minant solutions, the point at which a crystalline phase
moves to the opposite side of the balanced equation. Com-
positional degeneracy at the singular point would appear
in the determinant solution as a zero coefficient for the
phase that moves to the opposite side of the equation.

An equation that has the liquid phase and one crystal-
line phase together on one side ofthe equation (peritectic)
may also change by the transfer of a second crystalline
phase to that side ofthe equation. Again, a singular point
is generated whose location can be determined from suc-
cessive determinant solutions as already described. The
reaction is of the peritectic type on both sides of the sin-
gular point.

The geometry of this situation is illustrated in Figure
2. At pressure P,, the equation for the peritectic poinl d,
(type B peritectic of Ricci, 1951, p. 239) is

X + XYZ: dt + Y. (l)

At pressure Pr, the equation for the peritectic point d,
(type A peritectic of Ricci) on the other side ofthe singular
point is

Y Y Z : 4 + Y + X .  ( 2 )

At pressure Pr, the peritectic liquid d, and phase I have
beenjoined on the right side ofthe equation by a second
crystalline phase X. The singular point occurs at a pressure
between P, and P, just as the liquid composition moves
across the dashed extension of the Y-XYZjoin. Note that
at P, a singular equation occurs (XYZ : d, * If. This
isobarically invariant equation corresponds to a point on
a univariant line in P-Z space that starts at the singular
point and extends toward P,. The singular (binary) uni-
variant curve involves one less phase and one less com-
ponent than the ternary univariant line defined by Equa-
tions I and 2, and the equation defining the singular curve
as it exists at the singular point can be determined simply
by deleting the phase Xthat transfers from the left to the
right side of Equations I and 2.

Phase relationships at the pressure ofthe singular point
are shown in Figure 3a. At this pressure, the invariant-
point liquid is not classified as either a ternary peritectic
or eutectic because it lies on the extension of the join
Y-XYZ. Point I does, however, correspond to a binary
peritectic point defined by the equation XYZ: L + Y
and is the starting point in P-Z space for the singular
univariant curve.

DnoucrNc cRysrALLrzATroN AND FUSToN pATHS

When an equilibrium crystallization or fusion path is
deduced from a known temperature-composition phase
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Fig. 3. Two alternative isobaric liquidus equilibrium diagrams for the imaginary system X-Y-Z. Lines and symbols are as in
Fig. 2.

diagram, the validity of any assumed phase assemblage
on the path can be tested simply by visually comparing
the chosen bulk composition with the composition space
defined by the phases present. If the bulk composition is
contained within this space, a point on the crystallization
or fusion path has been found. The same result can be
obtained algebraically for a systern of any number of com-
ponents by finding a balanced chemical equation in which
the bulk composition is alone on one side of the equation
and the phases in equilibrium are on the other. Such an
equation is an algebraic statement of the fact that the bulk
composition is capable of being expressed by positive pro-
portions of all the phases in equilibrium. The remaining
discussion is essentially an elaboration ofthis basic prin-
ciple as applied to isobarically invariant, univariant, and
divariant equilibria. Because equilibrium crystallization
and fusion paths are identical but merely traversed in
opposite directions, the discussion applies equally to each
one.

fson.lnrc INvARTANT EeurLrBRrA

In the isobaric melting or crystallization history of a
particular bulk composition, the liquid path (Presnall,
1969) may include one or more liquidus invariant points.
Each test of a chosen bulk composition against an invari-
ant point that may lie on the liquid path involves three
tasks: (l) determining if the invariant point lies on the
liquid path, (2) determining, if the first task is passed, the
assemblage of crystalline phases in equilibrium at the in-
variant point, and (3) determining, again if the first task
is passed, the phase assemblages on the liquid path im-
mediately above and below the temperature of the in-
variant point. Note that when the invariant-point liquid
is part of the liquid path, the complete crystalline assem-
blage in equilibrium with this invariant-point liquid is not
always part of the crystal path (see discussion of Fig. 3
below).

A test ofan invariant-point liquid against a chosen bulk
composition.B is accomplished by deleting one of the n +
I phases in equilibrium at the invariant point and writing

a balanced equation involving B and the z remaining
phases. Repetition ofthis procedure for each ofthe n +
I phases yields a set of t4 + I trial equations, each in-
volving n * I compositions. This task is most easily
accomplished by Korzhinskii's method, which also yields
coeftcients for each of the compositions. Solutions are
desired in which (l) B is alone on one side ofthe equation
and (2) the liquid phase either with or without additional
phases is on the other. Equations that meet both these
conditions will be designated successful solutions andcor-
respond to situations in which B can be expressed in terms
of positive amounts of one or more phases including the
liquid phase.

For each set of n + I trial equations corresponding to
a test of a particular invariant point, one of the trials will
be the liquid-absent equation. It may seem superfluous
to list this equation in view ofthe stated purpose ofsearch-
ing for equations involving the liquid phase. It will be
seen, however, that important information can be lost
when this equation is omitted.

If a test yields no successful solutions, the invariant
point is not on the liquid path. That is, the bulk com-
position B cannot be expressed by positive proportions
of an assemblage of phases including the invariant-point
liquid. One situation of this type is illustrated in Figure
l. Given the bulk composition 8,, we wish to determine
if its liquid path includes the eutectic e. Liquid e is in
equilibrium with q, pyroxene c, and spinel k. When,B' is
substituted for each of the phases in equilibrium at the
invariant point, the resulting set ofequations is

( e )  B , * q : c + k
( q )  B , + e : c ' t k
( c )  B , * q + k : e
(k )  B , - r  q :  c  +  e '

In this and all subsequent sets of equations, the absent
composition that serves as a label for each equation is
shown in parentheses, and the positive coefficients, which
would appear in equations solved by determinants, are
omitted. None of the equations show B, alone on one side



PRESNALL: CRYSTALLIZATION AND FUSION PATHS 1065

of the equation and the liquid composition e on the other.
Therefore, the eutectic liquid e is not part of the liquid
path, a conclusion easily verified by visual inspection of
the diagram.

Now consider a trial in which the invariant point is part
of the liquid path. Bulk composition Brandthe peritectic
p (Fig. l) illustrate one such case. Liquid p is in equilib-
num with pyroxene b, olivine g, and spinel ft. The set of
trial equations is

( p )  B , - r g : b + h
( b )  B z : p + g + h
k )  B z : p + b + h
( h )  8 2 + b : g + p .

Two equations, (b) and fu'), are successful and show B,
alone on the left and the liquidp plus other phases on the
right. Therefore, peritecticp is a point on the liquid path.

The second task of determining the phase assemblage
in equilibrium with the invariant-point liquid is accom-
plished by listing the combined set of phases on the right-
hand sides of the two equations that show B, alone on
one side of the equation. In addition to the invariant-
point liquid p, these phases are b, g, and h. Thus, the
completecrystallineassemblage b + g + ftinequilibrium
with p occurs and is part of the crystal path, as defined
by Presnall (1969). In this particular example, the two
equations that show B, alone on one side ofthe equation
are both successful solutions, but in some cases (see the
following example), only one will be successful.

The third task of determining the phase assemblage
immediately above and below the invariant-point tem-
perature is accomplished by again inspecting the right-
hand sides ofequations (b) and (g). Equation (b) shows
one assemblage to be p + g + fr and equation (g) shows
the other to be p + b + h. Two points on the crystal path
are given by the two crystalline assemblages g + & and
b + h, the proportion ofeach phase being weighted ac-
cording to its coefficient. These two points are shown on
Figure I as bh and gh. Line bh-gh is the segment of the
crystal path corresponding to point p on the liquid path.
Equation (b) represents the equilibrium immediately above
the invariant point and (g) immediately below it. At the
invariant point, the proportions ofthe phases change ac-
cordingto the equatioup + g: b + h, with appropriate
coefficients.

Finally, consider a case in which the invariant-point
liquid is again part of the liquid path but in which only
one successful solution occrus. Such a case is illustrated
by a test of eutectic e agunst the bulk composition B,
(Fig. 1). The set of trial equations is

( e )  B z : Q + c * k
(q )  Bz :  €  +  c  +  k
( c )  B r * q : e * k
(k )  B , - r  q  +  c :  e .

Equation (q) is a successful solution because,B, is alone
on one side and the liquid e is present on the other. There-
fore, the eutectic e is part ofthe liquid path. The next step
is to examine both equations, (e) and (q), that show ,8,

alone on one side. The combined set of phases on the
right-hand side of these two equations is e, c, k, and q.
This is the complete set of phases that coexist at the in-
variant point, so it is concluded that the crystalline as-
semblage in equilibrium with the invariant-point liquid
is part of the crystal path for Br. Again, the phase assem-
blages for B, immediately below and above the temper-
ature of the invariant point are given by the right-hand
sides ofequations (e) and(q), and the proportions ofthese
phases in each assemblage are given by their coemcients.
In this example, the eutectic point e is the lowest-tem-
perature liquid on the liquid path and the right-hand side
of equation (e) gives the subsolidus assemblage q + c +
k that exists immediately below the temperature of the
eutectic.

The procedure that has been described up to this point
is adequate for dealing with most situations. However, a
complication that may arise is the occurrence of a zero
coefficient for one or more of the compositions in a given
equation. Such a result indicates that compositional de-
generacy exists (for example, see Zen, 1966, p. 32). The
composition or compositions with zero coefrcients will
be missing from the equation, which will cause two or
more of the trial equations to be identical. If all the coef-
ficients for a trial equation are zero, the composition cho-
sen to be absent is "absolutely indifferent" (Znn, 1966, p.
3l), and no unique equation can be written.

The situation in which a successful solution has one or
more zero coefficients will be called special degeneracy.
In this case, the bulk composition has a special compo-
sitional relationship to the invariant-point liquid. For ex-
ample, if the bulk composition B coincides with the com-
position of the invariant-point liquid I, the equation B :

Z will occur. As another example, if B lies along a line
between L and a coexisting crystalline phase C, the equa-
tion -B : L + C will occur. When special degeneracy
occurs, the procedure for testing an invariant point against
a bulk composition must be modified. All other types of
degeneracy can, for present puq)oses, be ignored. That is,
if the invariant-point liquid and two other crystalline
phases in equilibrium with it all lie along a single line,
degeneracy exists. However, because the bulk composi-
tion is not involved in this degeneracy, no complications
arise in the testing procedures explained above. Similarly,
if the bulk composition lies, for example, along the line
defined by two crystalline phases, degeneracy also occurs.
In this case, the invariant-point liquid is not involved in
the degeneracy, and again no complications arise. Special
degeneracy requires the involvement of both the bulk
composition and the invariant-point liquid and is the only
type of degeneracy that requires a modified testing pro-
cedure.

Even when special degeneracy occurs, the procedures
for (l) determining if an invariant-point liquid lies on the
liquid path and (2) determining the assemblage of phases
in equilibrium with the invariant-point liquid remain un-
changed. Only the procedure for determining the phase
assemblages immediately above and below the invariant-
point temperature must be modified. For cases involving
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special degeneracy, these phase assemblages depend not
only on the chemography of the phases in equilibrium at
the invariant-point temperature but also on the positions
ofthe liquidus boundary lines as they leave the invariant
point.

These relationships are best understood by considering
an example. The two phase diagrams in Figures 3a and
3b show identical compositions for the invariant-point
liquid Z, the bulk compositions B, and B'r, and the three
crystalline phases X, Y, and XYZ in equilibrium with the
invariant-point liquid. The diagrams differ, however, in
the positions of some of the liquidus univariant lines com-
ing from the invariant-point liquid. Note that special de-
generacy occurs in both diagrams because B, and B\ lie
along a line between the crystalline phases Y and XYZ
and the invariant-point liquid I.

Before proceeding to a test of B, and -B', against Z, it is
useful to note, for each diagram, the crystal and liquid
paths in the temperature range near L. First consider Fig-
ure 3a. During crystallization, the crystal path starts at y

as the liquid moves along the dashed line from B, to L;
the phase assemblage is X + liquid. Then, as the liquid
remains at I, the average composition ofthe crystals moves
along the line Y-XYZ to XYZ. During this part of the
cooling history, I dissolves as XYZ crystallizes and the
phase assemblage is I + XYZ + Z. Just as the average
composition of the crystals reaches XYZ, Y vanishes and
the phase assemblage momentarily is XYZ + Z. The liq-
uid then moves out along the boundary line I-r as the
average composition of the crystals moves a small dis-
tance toward X from XYZ; at this stage the assemblage
i sX+XYZ+ l i qu id .

In Figure 3b, the first part of the crystallrzation history
is the same down to the point at which the liquid is ready
to leave Z. At this point, the liquid does not move out
along the boundary line L-Mbut instead moves directly
away from XYZ acrosslhe XYZ pimary phase field. The
assemblage at this stage is XYZ + liquid. Thus, the two
sequences of phase assemblages, going down-temperature,
are as follows:

Figure 3a
Y + liquid
Y + X Y Z + L
X Y Z + L

Figure 3b
Y + liquid
Y + X Y Z + L
X Y Z + L

X+XYZ+ l i qu id

The difference in the two sequences is caused by the dif-
ferent positions of the boundary lines Z-r (Fig. 3a) and
L-M (Fie.3b).

In Figure 3a, a test of B, against I yields the following
trial equations:

(L) 83 + Y: XYZ
(n no unique equation
( D  B t : L + X Y Z

6 Y A  8 3 : L + v .

When X is absent, no unique equation exists because 1,
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XYZ, 83, and Z lie along the same line. This degeneracy
would be indicated in a determinant solution by zero coef-
ficients for each of the compositions. In equations (I/) and
(XYA, the crystalline phase Xhas a zero coefrcient and
is therefore missing, which causes each of these equations
to be identicd to two of the three possible equations that
could be written for (.X). Because both (I) and(XYZ) are
successful solutions with a zero coefficient for X, special
degeneracy exists. As in the general procedure already
described, the existence of these successful solutions in-
dicates that Z is part of the liquid path. Also, the phase
assemblage at the invariant-point temperature is Z + Y +
XYZ, whichis obtained in the normal way from the com-
bined list of phases on the right-hand sides of the two
equations, (Y) and (XYQ, that show B, alone on one side
of the equation. The final task of determining the phase
assemblages immediately below and above the invariant-
point temperature would, by the normal procedure, be
given by the right-hand sides of equations (Y) and (XYQ,
thatis, XYZ + L and I + Z. From the previous discussion
of the crystal and liquid paths, it can be seen that the high-
temperature assemblage, Y + L, is correct, but the pre-
sumed low-temperature assemblage, XYZ + Z, occurs
while the liquid is still at Z, not at temperatures imme-
diately below that of Z. Note that the standard procedure
does not give incorrect information because the assem-
blage XYZ * Z does occur. The information given, how-
ever, is incomplete because the assemblage at tempera-
tures immediately below that of Z is not given.

Now consider Figure 3b. The set of trial equations in
this case is identical to that for Figure 3a because the
chemography ofthe phases in equilibrium at the invariant
point is the same. The equations are

(L) B5 + Y: XYZ
(n no unique equation
( Y )  B " : L + X Y Z

( xYq  B i : L+Y .

The standard procedure correctly yields the same assem-
blage at the invariant-point temperature, Y + XYZ + L,
and the same presumed assemblages immediately above
and below the invariant-point temperature, Y + L and'
XYZ + Z. In contrast to the result from Figure 3a, com-
parison with the previous discussion of the crystallization
history shows that the presumed assemblages above and
below the invariant-point temperature are colTect and
complete. The differing results for these two cases with
identical chemography at the invariant-point temperature
illustrate the point that when special degeneracy occurs,
the phase assemblages deduced from the trial equations
are correct but sometimes incomplete, and do not nec-
essarily indicate the phase assemblages immediately above
and below the invariant-point temperature.

When special degeneracy occurs, another method must
be used to determine the two phase assemblages imme-
diately above and below the invariant-point temperature.
The procedure is to examine each of the liquidus univari-
ant lines coming from the invariant point, then all the
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divariant areas between these lines, etc., until the two
assemblages are found. In the present example (Fig. 3a),
points 4 w, and r are chosen on each of the univariant
boundary lines coming from Z and are used to determine
if a reaction can be written with Bj alone on one side and
the phases in equilibrium at the chosen point on the other.
Liquid u is in equilibrium with X and Y, so the equation
would be 81 + X : v * Y. The test fails. For w, the
equation would be 83 + Y : XYZ. Again, the test fails.
For I the equation would be Bt: r + X + XYZ. This
test is successful, and the phase assemblage on the down-
temperature side of the invariant point is given by the
right side of the equation, r r X + XYZ. It is important
in making these tests to choose points on the univariant
lines close to the invariant point because in some cases
the liquid path will leave the univariant line only a small
distance away from the invariant point. In Figure 3a,
points y, lr, and r have been chosen some distance away
from I to facilitate visualization.

At this stage, all of the univariant lines have been ex-
amined but only the down-temperature phase assemblage
has been found. Therefore, to find the up-temperature
phase assemblage, it is necessary next to examine all the
divariant areas that touch the invariant point. Consider
first the divariant liquidus surface bounded by the uni-
variant lines v-Z and L-r. A liquid that moves across this
surface directly into the invariant point Z must cross a
line (not shown) between v and r if v and r both lie suf-
ficiently close to I. Liquids on this surface are in equilib-
rium with X so the test is performed by solving the equa-
tion involving Br, v, r, and X. If the liquid path lies on
this surface and extends directly into I, the equation will
show .8, alone on one side and all the remaining com-
positions on the other. Inspection of the diagram shows
that the equation is v : Br * X 'l r. Therefore, the liquid
path does not lie on this divariant surface. Consider next
the divariant surface bounded by the univariant lines I-w
and L-r. Liquids on this surface are in equilibrium with
crystals of XYZ, so the equation is B. + w : XYZ + r.
Again, the liquid path does not pass across this divariant
surface. The third and final possibility is the liquidus sur-
face bounded by v-L and L-w. Liquids on this surface are
in equilibrium with crystals of I, so the equation is .B3 :
Y * v t w. Thus, the phase assemblage above the invari-
ant-point temperature rs L + Y, and the task is complete.

A summary of the sequence of tests for invariant points
and the phase assemblages at temperatures immediately
above and below these points is as follows:

l. Determine whether or not the liquid composition at
the invariant point is part of the liquid path. If at least
one equation is found with the bulk composition alone
on one side and the liquid, with or without other phases,
on the other side (a successful solution), the invariant-
point liquid is part of the liquid path. If no successful
solutions are found, the invariant-point liquid is not part
of the liquid path.

2. If test one is passed, determine the phase assemblage
in equilibrium with the invariant-point liquid. This as-

veight percent an

Fig. 4. The system diopside-albite-anorthite after Bowen
(l9l 5), Schairer and Yoder (l 960), and Osborn and Tait (1952),
with illustration ofunivariant phase relationships. Boundary line
z-n separates the diopside and plagioclase primary-phase fields.

semblage is the combined list of all the phases present in
the two equations that show the bulk composition alone
on one side of the equation. In the absence of special
degeneracy, this procedure will yield the complete assem-
blage of phases in equilibrium with the invariant-point
liquid.

3. Check the successful solutions to see if any of the
coeftcients are zero. If not, the phase assemblages present
in the two equations that show the bulk composition alone
on one side of the equation are the same as the phase
assemblages immediately above and below the invariant-
point temperature. If the successful solution or solutions
have one or more zero coefficients, special degeneracy
occurs, and the phase assemblages immediately above and
below the invariant-point temperature must be found by
trial and error testing of each univariant line, divariant
area, etc., that starts from the invariant point.

Isor.q.nrc UNTvARTANT EQUILTBRTA

For isobarically invariant equilibria, which involve n +
I phases, Korzhinskii's method is ideally suited to the
task of balancing equations. For isobarically univariant
equilibria, which involve only n phases, Korzhinskii's
method can be used by including the bulk composition
of the system as one of the chemical entities. Application
ofthis procedure to define univariant phase assemblages
immediately above and below the temperature of an iso-
baric invariant point has been explained in the preceding
section.

To illustrate some further aspects of the treatment of
univariant equilibria, we shall use a ternary example, the
system diopside-albite-anorthite (Fig. 4). Because of small
amounts of solid solution of Al in diopside and Mg in
plagieslass, this system is not stricfly ternary, but this

d t o p s t d e
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detail is ofno concern here. Ifwe hypothesize a situation
in which the number of components is too great for this
system to be represented graphically, experiments could
still be carried out in which the compositions of diopside
(always taken to be pure CaMgSirO.) and plagioclase in
equilibrium with all liquids along the boundary line m-n
could be determined. For example, an experiment on the
bulk composition s could be carried out that would yield
liquid /, in equilibrium with pure diopside di andplagio-
clase p.. With this data set and without any knowledge of
the geometrical appearance of Figure 4, all the univariant
phase relationships for any arbitrary bulk composition in
the system could be calculated.

Suppose, for example, it is desired to determine the
phase relationships (compositions and proportions of
phases, temperature) at the solidus for the bulk compo-
sition s. A determinant is set up involving the composi-
tions s, lr, di, and pr. It can been seen visually in Figure
4 that the solution would be s : l, + di + pr, with ap-
propriate coefficients. Therefore, the bulk composition s
consists partly of liquid, and the solidus lies at a lower
temperature. Another trial solution involving s, lr, di, and
p, would yield the equation r + /r : di + p,. The bulk
composition s, having been joined by /, on the same side
of the equation, can no longer be expressed by positive
amounts of an assemblage of phases including a liquid,
and we have therefore passed across the solidus temper-
ature. Intermediate trial solutions would bracket the point
at which the liquid phase changes from the right to the
left side of the equation; this point would be the solidus.
Proportions and compositions of coexisting phases at the
solidus temperature of s would then be determined.

As the temperature of composition s is increased above
its solidus, liquid compositions will move along the line
m-n loward n. The last liquid produced alongline m-n
during equilibrium fusion can be found by trial deter-
minant solutions just as the solidus temperature was found.
As long as the liquid remains on line m-n, determinant
solutions would be of the form s : l, + di + pr. Tial
solutions for liquids at higher temperatures, such as at /r,
would yield solutions of the form s + di : ls -l pr. So-
lutions for liquid compositions along m-n intermediate
between l, and l, would bracket the point at which di
changes to the left side of the equation; this change marks
the last liquid composition produced along the line m-n.
For each point on the liquid path along m-n, a point on
the crystal path can be located by solving an equation of
the form s : l, + di + pr. The coefrcients for di and p,
in such an equation give the relative proportions of di and
p, in the crystalline assemblage and thereby a point on
the crystal path.

If the bulk composition s had been located in the pri-
mary phase field of diopside, solutions at temperatures
above the point at which a liquid could exist along the
line ru-n would be of the form ,s * p: : L + di. A symmetry
is evident. When the bulk composition lies in the plagio-
clase primary-phase field, diopside changes to the left side
of the equation. When the bulk composition lies in the

diopside primary-phase field, plagioclase changes. Also,
it can be seen that the divariant phase assemblage that
occurs just above the temperature at which the liquid
composition leaves the line m-n is revealed simply by
deleting from the balanced equation the crystalline phase
that changes to the other side ofthe equation.

These ternary relationships can be generalized as fol-
lows. An isobaric univariant equilibrium involving a liq-
uid on a boundary line will occur when balanced equations
show the bulk composition alone on one side of the equa-
tion and a liquid and two crystalline phases on the other.
This is simply another way of stating that the bulk com-
position must be capable of being expressed in terms of
positive proportions of the phases in equilibrium. The
univariant relationship may be terminated at the high- or
low-temperature end by an invariant point. Alternatively,
the termination could occur by loss of a phase to produce
a divariant situation. and the termination would be marked
by a solid or liquid phase moving to the opposite side of
the equation to join the bulk composition. The nature of
the divariant equilibrium is revealed by deleting the phase
that changes sides. Thus, ifthe liquid phase changes sides,
it is deleted from the equation, and the divariant equilib-
rium is expressed by the bulk composition on one side of
the equation and two crystalline phases on the other. In
this case, the solidus has been encountered. On the other
hand, if a crystal phase changes sides, deletion of this
phase results in an equation with the bulk composition
on one side and the liquid plus one solid phase on the
other. This marks the movement of the liquid composi-
tion offthe univariant line into a divariant primary phase
field.

When these ternary relationships are further generalized
to a system of n components, the same treatment applies.
The bulk composition will still occur alone on one side
ofthe equation ifan isobaric univariant equilibrium oc-
curs, and the high- and low-temperature terminations of
this equilibrium will be marked either by an invariant
point or by loss ofa phase, producing a divariant situation.
Loss of a phase would be marked by the transfer of this
phase from one side ofthe equation to the other.

Figure 4 illustrates the univariant situation in which
both solid phases crystallize on cooling. If one of the solid
phases dissolves while the other crystallizes, the method
of treatment remains the same. Inspection of the coeffi-
cients in determinant solutions over a range of tempera-
ture reveals whether or not one of the solid phases dis-
solves. If dissolution continues to complete exhaustion of
the solid phase so that the liquid path leaves the boundary
line and moves out across a divariant primary phase field,
the point of complete exhaustion is marked, as before, by
the transfer ofthe exhausted solid phase to the other side
of the equation. The new divariant equilibrium is ob-
tained by deleting the transferred phase from the equation.

Isonlnrc DTvARTANT EeUILTBRTA

As the variance increases beyond one (n phases in an
isobaric n-component system), it is necessary to include



"dummy" compositionsin orderto obtain solutions. When
the variance is two, one dummy composition is included
in addition to the bulk composition of the mixture. For
example, in a ternary system, one solid phase in equilib-
rium with one liquid phase is divariant. If the bulk com-
position and one dummy composition are included with
the two phases in equilibrium, a solution can be obtained.
A problem associated with the introduction of dummy
compositions is that they must be eliminated later in order
to define the phase assemblages that exist.

Figure 5 illustrates a divariant situation in which a dum-
my composition is first introduced to allow solutions to
be calculated and then is eliminated. It is desired to de-
termine the point a, on the divariant equilibrium liquid
path x-y along which plagioclase of varying composition
crystallizes during cooling of the bulk composition x. To
determine this point, it is necessary to have relatively
complete data on plagioclase compositions in equilibrium
with liquids throughout the plagioclase primary phase field.
With such a data set, we can attempt several trial solu-
tions. A random dummy composition I is chosen, and
three liquid compositions ar, ar, and a, are tied as pos-
sible points on the liquid path. Corresponding plagioclase
compositions ur, ur, and r,r, in equilibrium with each of
the three liquids are known. The objective is to look for
a solution in which the coefrcient of I is zero so that t can
be deleted from the reaction. For the liquid a,, the equa-
tion would be a, + ut: t * x. For ar, the equation would
be a, + u3 * t : x. Because I has moved to the other side
of the equation, there must be an intermediate solution
at which the coefficient for I passes through zero and leaves
the desired result a, * ur:;r. If the data set is complete,
the point a, and others like it on the path x-y can be
bracketed as closely as desired by successive trial solu-
tions.

The enormous amount of work involved in assembling
a complete data set would usually be prohibitive, but
approximate solutions could still be obtained. In general,
it is desirable to carry out initial solutions based on good
experimental data until two are found that bracket the
desired result. Approximate intermediate solutions can
then be found by interpolating between the data points,
and these results can in turn be used as guides for more
refined experimental data in the composition region of
rnterest.

Fsrnor,ocrc AppLrcATroNs

For an n-component system with a variance .F greater
than one, the methods developed here require the intro-
duction of f'- I dummy compositions. There is a rea-
sonable chance of dealing with this situation for n - |
phases (.F': 2) and one dummy composition. Two or more
dummy compositions can theoretically be handled, but
the practical difficulties increase sharply for each addi-
tional dummy composition that must be added. For ex-
ample, location of a single point on a trivariant portion
of a liquid path would require simultaneous elimination
oftwo dummy compositions. This could be accomplished
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by finding determinant solutions for a two-dimensional
grid of possible liquid compositions. Location of several
points on this portion of the liquid path would require a
three-dimensional grid of possible liquid compositions
with data on the coexisting crystalline phase compositions
for each liquid; the task of data collection and handling
would rapidly become enornous.

In natural magmatic systems, the number of major
components is large, about nine or ten, and the number
of phases varies from two or three near the liquidus to
about six or seven near the solidus. Thus. the most ob-
vious immediate application of this method is to near-
solidus temperatures where the variance and the number
of dummy compositions needed are as small as possible.

Studies of near-solidus melting relationships in model
systems of five and six components are currently within
reach and offer an exciting possibility for tightening phase-
equilibrium constraints on magma generation. Consider
the situation for basaltic rocks. About 99o/o of the com-
position of the Earth's mantle and about 950/o of the com-
position of basalt can be characterized by the six-com-
ponent system CaO-MgO-AlrOr-SiOr-NarO-FeO. During
the early stages ofpartial melting of a simplified peridotite
in this system, the number of coexisting phases would be
five and sometimes six. Thus, the potential for clarifuing
the polybaric melting relationships of peridotite to a very
close approximation and with a high degree of rigor is
excellent. For arbitrarily chosen simplified peridotite
compositions in this six-component system, it would be
possible to calculate at any pressure the phase composi-
tions and proportions versus percent melting and the tem-
perature of appearance and disappearance of phases. A
key feature is the ability to calculate these results for sim-
plified peridotites with varying phase compositions and
phase proportions. Preliminary calculations of this sort
have already been carried out for simplified peridotite in
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Fig. 5. The system diopside-albite-anorthite with illustration
of divariant phase relationships.
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the five-component system CaO-MgO-Al'O'-SiOr-Na'O
(Presnall and Hoover, 1982; Hoover and Presnall, 1982).

A similar situation exists with respect to granitic rocks.
About 92-970/o of the composition of granitic rocks and
probably the deep parts of thickened continental crust
beneath granitic batholiths can be represented in the six-
component system CaO-MgO-AlrOr-SiOr-NarO-K2O. A
rigorous understanding of melting relationships in the rel-
evant parts of this system in the pressure range lG-25
kbar would allow a richly detailed understanding of phase
relationships bearing on the generation ofgranitic batho-
liths far exceeding that gained from the simplified four-
component approach of Presnall and Bateman (1973).
Some difficulties associated with studies of granitic sys-
tems are slow reaction rates and the need to add still other
components such as HrO and FeO. Nevertheless, the path
toward a more rigorous and systematic set of phase-equi-
librium constraints on the generation of granitic rocks
seems obvious.

Even for the most ideal situations in which the variance
is two or less, the methods developed here require com-
prehensive data on the compositions of all phases in equi-
librium over the temperature-pressure range of interest.
Thus, the task of assembling experimental and analytical
data on multicomponent systems is not minimized; mere-
ly a method of manipulating these data is provided. Be-
cause of the many large determinants that must be solved,
the only practical approach is to use a computer. A com-
bination of phase-equilibrium studies of multicomponent
model systems, determination of coexisting phase com-
positions by microprobe, and manipulation of the data
by computer ofers the prospect ofobtaining a very general
and rigorous set ofphase-equilibrium constraints on which
to base significantly improved models of magma gener-
ation.
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