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ALGEBRAIC METHODS FOR DETERMINING DIRECTIONS OF
DECREASING TEMPERATURE ALONG ISOBARIC LIOUIDUS UNIVARIANT LINES
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ABSTRACT

Two features of temperature-composition slopes along
isobaric liquidus univariant boundary lines are of
particular interest. One is the direction of decreasing
temperature as these lines terminate at isobaric liquidus
invariant points, and the other is the existence and
location of temperature maxima and minima. In systems
of more than four components, these features cannot be
defined by conventional geometrical procedures. Al-
gebraic methods are necessary. For an ,?-component
system, the form of the balanced equation involving the
,? + I phases in equilibrium at an isobaric liquidus
invariant point allows a determination of the tempera-
ture-composition slopes of all the liquidus univariant lines
terminating at the invariant point. To determine the
existence and location of a temperature maximum or
minimum along an isobaric liquidus boundary line'
balanced equations are used that involve two liquids on
the univariant line and the r - I crystalline phases in
equilibrium wirh each of these two liquids.

Keywords: algebraic niethods, multicomponent systems'
temperature maximum, temperature minimum' li-
quidus boundary lines.

Souvatns

Il y a deux aspects d'int6r6t a propos de la temp6rature
et de la composition le long des courbes univariantes
cotectiques sur le liquidus. Premidrement, quelle est la
direction de diminution en temp6rature li ott ces courbes
atteignent un point isobariquement invariant sur le
liquidus? Deuxibmement, y a-t-il des minima ou des
maxima en temperature, et oir se trouvent-ils? Dans tout
systcme d plus de quatre composants, ces aspects ne
peuvent 6tre d6finis au moyen de constructions g6om6tri-
ques conventionnelles; une approche alg6brique s'impose.
Pour un systbme ir r composants, la lorme de l'6quation
balanc6e impliquant les r + I phases i l'6quilibre ir un
point isobariquement invariant sur le liquidus permet une
d6termination des pentes de toutes les lignes univariantes
sur le liquidus qui terminent d ce point, en termes de
temp6rature et de composition. Afin de d6terminer s'il
existe des maxima et des minima en temp6rature le long
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d'une courbe cotectique isobare sur le liquidus, et d'en
trouver les coordonn6es, il est n6cessaire d'utiliser des
6quations balanc6es impliquant deux liquides sur cette
courbe et les n - I phases en 6quilibre avec chacun de
ceux-ci.

(Traduit par la Rddaction)

Mots-clds; m6thodes alg6briques, systCmes d composants
multiples, maximum en temp6rature, minimum en
temp6rature, liquidus, courbes cotectiques.

INTRODucrloN

Presnall (1986) presented some algebraic
methods for describing and manipulating isobaric
liquidus compositional relationships in multicom-
ponent systems. The methods can be applied to
systems of any number of components, but are
most useful for systems of more than four
components, in which the compositional relation-
ships among the phases cannot be represented
diagrammatically. Additional algebraic procedures
are presented here that supplement those described
earlier. Two problems related to the temperature
profile along an isobaric liquidus univariant line
lre considered. One concerns the direction of
decreasing temperature of such a line as it
encounters a liquidus invariant point, and the other
concerns determination of the existence and
location of a temperature maximum or minimum.
Invariant equilibria involving liquid immiscibility
will not be considered.

SLOPES AT INVARIANT POINTS

For an n-component system' an isobaric liquidus
invariant point can be determined to be either ol
the peritectic or eutectic type by balancing a
chemical reaction involving the n + 1 phases in
equilibrium at the invariant point (Presnall 1986).
For a system of many components' the equation is
most easily balanced by using determinants accord-
ing to the procedure of Korzhinskii (1959' p.
103-100. In the case of a eutectic point, the
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balanced equation will show the liquid phase alone
on one side of the equation, and all the crystalline
phases on the other. For a peritectic point, the
liquid phase will be joined by one or more of the
crystalline phases on the same side of the equation.
TheSe two types of equations are algebraic
statements of the definition of a eutectic and
peritectic liquid. In the former, the composition of
the liquid can be expressed by positive proportions
of all the crystalline phases in equilibrium with it;
in the latter, the liquid composition cannot be so
expressed.

Of additional interest is a determination of which
liquidus univariant lines terminating at the in-
variant point decrease in temperature toward the
invariant point, and which increase. For a eutectic
point, temperatures along all the liquidus
univariant lines obviously decrease toward the
invariant point, but for a peritectic point, tempera-
tures along one or more of the univariant lines must
increase.

The desired information can be derived from the
balanced equation of phases in equilibrium at the
invariant point. To write this equation, the
compositions of all the phases must be known. The
procedure applies to a system of any number of
components, but examples from ternary systems
are used to explain the methods so that composi-
tional relationships can be shown both algebraically
and geometrically. The presence or absence of
compositional degeneracy (Zen 1966) does not
affect the procedure.

Figure I shows liquidus boundary-lines and
solidus compatibility-triangles for two hypothetical

ternary phase diagrams. In Figure la, the reaction
involving phases in equilibrium at the peritectic
point p1 can be found from the determinant,

8 0 1 0

A B C  O . 3 3  0 . 3 3  0 . 3 3

p r  O . 5 2  O . I 7  0 . 3 L

in which the first column gives labels for the phases
involved in the peritectic reaction, and the second,
third, and fourth columns give the proportions of
components A, B, and C, respectively, that define
the composition of each of the four phases.
Solution of this determinant vields the balanced
equation,

0.88p1 + 0.128 = 0.82,l + O.|\ABC, (1)

in which the coefficients on each side of the
equation have been normalized to a total of one.
The coefficients give useful information about the
proportions of phases and would always be present
when determinant solutions are used to apply the
methods explained here to systems of more than
four components. However, the coefficients are not
necessary for an explanation of the algebraic
methods and are omitted from the remainder of
the discussion. Thus, equation (l) is simplified to

cAA
Ftc. l. Hypothetical liquidus phase diagrams for the ternary system .4-B-C to illustrate slopes of liquidus univariant

lines at invariant points. Lines with arrows indicating directions of decreasing temperature are liquidus
boundary-lines. Lines without arrows show solidus compatibility+riangles.
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p . + B = A + A B C ,  Q )

which can be seen visually from Figure la to be
correct. Similarly, in Figure lb, the reaction for
peritectic point p2 is

p z + A + B = A B C ,  ( 3 )

and the reaction for eutectic point e is

e = A + A B C + C .  ( 4 )

In general, it is evident that the amount of the
phase assemblage on the side of an equation that
does not contain the liquid will increase on removal
of heat. Therefore, in reaction (2), the phase
assemblage / + ABCincreases on removal of heat.
This is the same assemblage of crystalline phases
in equilibrium with liquid along the one univariant
line that decreases in temperature away from
invariant point p'. Neither of the other two
univariant lines contains the crystalline assemblage,
A + ABC, and both lines decrease in temperature
toward the invariant point.

Similarly, in reaction (3), phase ,4BC increases
upon removal of heat. This phase occurs as part
of both phase assemblages for the univariant lines
that decrease in temperature away from the
invariant point (p2 + ABC + A and p2 + ABC
+ B). Also, ABC is not part of the phase

assemblage for the one univarianr line (p2 + A +
B) that decreases in temperature toward the
invariant point.

In reaction (4), the phase assemblage A + ABC
+ C increases upon removal of heat. This
assemblage is not part of any of the univariant lines
that join at invariant point e. None of these lines
decrease in temperature awziy fiom the invariant
point.

From these three examples' the following rule
can be formulated with reference to the balanced
equation defining the phases reacting at an
invariant point. All liquidus univariant lines
terminating at the invariant point and containing
the phase assemblage that increases in amount on
removal of heat (that is, the phase assemblage not
containing the liquid phase) must decrease in
temperature away from the invariant point. Con-
versely, all liquidus univariant lines that do not
contain the phase assemblage that increases in
amount on removal of heat must decrease in
temperature toward the invariant point.

Tevprn,qrunE MAXIMA AND MINIMA

The temperature-composition profile of an
isobaric liquidus univariant line shows either a
continuously decreasing slope in one direction, a
temperature maximum' or a temperature minimum'
For a ternary system, the existence of a temperature

ba

Frc. 2. Ternary isobaric liquidus boundaryJines with a temperature maximum (T.u"). X and Y are solid solutions in
equilibrium with liquids along the boundary line l.
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maximum or minimum is evident when the
compositions of the liquid and its two coexisting
crystalline phases become collinear. This is indi-
cated by collapse of the three-phase triangles to a
line and corresponds to a unique point on the
boundary line. In this section, criteria will be
described for the algebraic determinatibn of the
existence and location of a temperature maximum
or minimum. As before, ternary systems are used
for illustrative purposes, but the method is
applicable to a system of any number of com-
ponents. The solution to the problem of a
temBerature maximum has been presented by
Mukhopadhyay (1991), and for continuity of the
more general discussion presented here, the solu-
tion given by Mukhopadhyay is repeated.

The procedure is to choose compositions of two
liquids spaced at a small interval along a liquidus
univariant boundaryJine. Then a balanced equa-
tion is written that includes the compositions of the
two liquids and the two crystalline phases in
equilibrium with one of the liquids. A second
equation is written that includes compositions of
the same two liquids and the slightly different
compositions of the same two crystalline phases in
equilibrium with the other liquid. On the basis of
the form of these two equations, the boundary line
between the two liquid compositions can be
determined to contain a temperature maximum, a
temperature minimum, or neither.

Consider first the case of a temperature
maximum. Figure 2a shows a temperature maxi-

mum on a liquidus boundary-line, l, liquids along
this line being in equilibrium with two crystalline
phases, X and Y, Ihat show solid solution. No
reaction relationship (dissolution of one of the
crystalline phases during cooling) occurs along the
boundary line. Figure 2b shows a similar situation,
except that a reaction.relationship occurs in which
Xreacts with liquid to form Yon cooling. In Figure
2a, a balanced equation can be written that involves
the two liquids on the boundary line, L1 and L2,
and the two crystalline phases, Xr and Y', in
equilibrium with lt. A second equation can be
written that involves I1 and L2 and the two
crystalline phases, X, and 12, in equilibrium with
12. These two equations are:

L t + L 2 = X r *
L t + L 2 = X z +

The corresponding pair of equations for Figure 2b
is:

Y r = L t + L 2 + X \
Y z : L t + L 2 + X 2

Note that in both pairs, 11 and L2 occur together
on one side of the equation, and a temperature
maximum, Tn 

"*, 
lies on the boundary line between

Lt and L2.
Figure 3 shows diagrams similar to those in

Figure 2 except that a temperature minimum occurs
instead of a temperature maximum. The pair of
equations for Figure 3a is:

L r = L z + X t + Y I

Yl
Y2

ba

' v w
, l  12

Frc. 3. Ternary isobaric liquidus boundaryJines with a temperature minimum (Tn,i,J. X, Y, and L are as in Figure 2.
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x1 x2 XE

Y Y, Y2 Ys
Frc. 4. Ternary isobaric liquidus boundary-line with no

minimum or maximum temperature. X, Y, and L are
as in Figure 2.

L t + X 2 * Y t = 7 t

In Figure 3b, the pair of equations is:

L t + X t = L z * Y t
L t + Y r = L t * X z

For each pair of equations, two characteristics are
evident. First, I' and L2 appear on opposite sides
of each equation. Second, substitution of X2 for
X1 and Yt for Yt causes the substituted phases to
move to the opposite side of the equation.

Figure 4 shows a case in which no maximum or
minimum temperature occurs. Two possibilities are
illustrated, one for liquids 11 and L2 in which the
two three-phase triangles overlap, and one for
liquids L2 and 13 in which they do not. The pair
of equations for L1 and Z2 is:

L t : X r + Y t + L 2
L r : X z + Y 2 + L z

The two liquids, 11 and L2, ale in each case on
opposite sides of the equation, but when X2 and
Y2 are substituted, respectively, for Xt and Y1, no
shifts to the opposite side of the equation occur.
The pair of equations for 12 and 13 is:

L z : X z + Y 2 + L 3
L z + L 1 = X t * Y t

Here, L2 and l, are on opposite sides of the first
equation, but on the same side of the second
equation.

These examples illustrate a simple set of rules
that apply generally for a system of any number
of components.

(l) A temperature maximum occurs on the
univariant line between Z1 and 12 if, for both
equations, Ir and L2 occur together on the same
side of the equation.

@ A temperature minimum occurs on the
univariant line between 11 and L, if (a) for both
equations, L1 and L2 occur on opposite sides of the
equation, and (b) each substituted crystalline phase
in the second equation moves to the opposite side
ol the equation from that of its counterpart in the
first equation. Both of these conditions must occur.

(3) All other configurations of the two equa-
rions indicate that the univariant line slopes
continuously in one direction.

If the compositions of the two chosen liquids are
far apart, and if the phase relationships along the
boundary line change abruptly with composition or
temperature, incorrect conclusions can occur.
Therefore, in regions of a phase diagram where
rapid changes occur, reliable application of the
method would in some cases require tests of short
segments of the boundary line. This, in turn, would
require a high density of data. The procedures
presented here can reveal features of a phase
diagram only to the extent that these features are
manifest in the data used.
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